Jammed elastic shells - a 3D experimental soft frictionless granular system.

نویسندگان

  • Jissy Jose
  • Gerhard A Blab
  • Alfons van Blaaderen
  • Arnout Imhof
چکیده

We present a new experimental system of monodisperse, soft, frictionless, fluorescent labeled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The elastic shells in a jammed packing are deformed in such a way that at each contact one of the shells buckles with a dimple and the other remain spherical, closely resembling overlapping spheres. Using confocal microscopy, we obtained 3D stacks of images of shells at different volume fractions which were subsequently processed in ImageJ software to find their coordinates. The determination of 3D coordinates involved three steps: locating the edges of shells in all 2D slices, analyzing their shape and subsequently finding their 2D coordinates, and finally determining their 3D centers by grouping the corresponding 2D coordinates. From this analysis routine we obtained particle coordinates with sub-pixel accuracy. In a contact pair we also identified the shell that underwent buckling forming a dimple by analyzing the intensity profile of a line that connects the centers of particle pairs. The amorphous structure of the packing was analyzed as a function of distance to the jamming threshold by investigating the radial distribution function, bond order parameters, contact numbers and the number of dimples per particle (buckling number), which is a unique property of this system. We find that the power law scaling of the contact number with excess volume fraction deviated from theoretical and computer simulation predictions. In addition, the buckling number also showed a similar scaling as that of the contact number with distance to the jamming transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random three-dimensional jammed packings of elastic shells acting as force sensors.

In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively la...

متن کامل

Non-affine response: Jammed packings vs. spring networks

We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We find that the shear response of packing-derived networks, and both the shear and compression response of randomly cut networks, are all similar: the e...

متن کامل

Self-assembly in a near-frictionless granular material: conformational structures and transitions in uniaxial cyclic compression of hydrogel spheres.

We use a Markov transition matrix-based analysis to explore the structures and structural transitions in a three-dimensional assembly of hydrogel spheres under cyclic uniaxial compression. We apply these methods on experimental data obtained from a packing of nearly frictionless hydrogel balls. This allows an exploration of the emergence and evolution of mesoscale internal structures - a key mi...

متن کامل

Fluctuations in shear-jammed states: A statistical ensemble approach

Granular matter exists out of thermal equilibrium, i.e. it is athermal. While conventional equilibrium statistical mechanics is not useful for characterizing granular materials, the idea of constructing a statistical ensemble analogous to its equilibrium counterpart to describe static granular matter was proposed by Edwards and Oakshott more than two decades ago. Recent years have seen several ...

متن کامل

Measuring the coordination number and entropy of a 3D jammed emulsion packing by confocal microscopy.

Jammed matter is by definition impenetrable to light, such that little is known about the geometry of jammed systems. Using confocal microscopy to image an emulsion in 3D, we first explain the origin of the enhanced fluorescence at the droplet contacts and then determine the contact network inside the model frictionless system. This enables the experimental determination of the average coordina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2015